Highly contrasting effects of different climate forcing agents on terrestrial ecosystem services.
نویسندگان
چکیده
Many atmospheric constituents besides carbon dioxide (CO(2)) contribute to global warming, and it is common to compare their influence on climate in terms of radiative forcing, which measures their impact on the planetary energy budget. A number of recent studies have shown that many radiatively active constituents also have important impacts on the physiological functioning of ecosystems, and thus the 'ecosystem services' that humankind relies upon. CO(2) increases have most probably increased river runoff and had generally positive impacts on plant growth where nutrients are non-limiting, whereas increases in near-surface ozone (O(3)) are very detrimental to plant productivity. Atmospheric aerosols increase the fraction of surface diffuse light, which is beneficial for plant growth. To illustrate these differences, we present the impact on net primary productivity and runoff of higher CO(2), higher near-surface O(3), and lower sulphate aerosols, and for equivalent changes in radiative forcing. We compare this with the impact of climate change alone, arising, for example, from a physiologically inactive gas such as methane (CH(4)). For equivalent levels of change in radiative forcing, we show that the combined climate and physiological impacts of these individual agents vary markedly and in some cases actually differ in sign. This study highlights the need to develop more informative metrics of the impact of changing atmospheric constituents that go beyond simple radiative forcing.
منابع مشابه
Contrasting responses of terrestrial ecosystem production to hot temperature extreme regimes between grassland and forest
During the past several decades, observational data have shown a faster increase in hot temperature extremes than the change in mean temperature. Increasingly high extreme temperatures are expected to affect terrestrial ecosystem function. The ecological impact of hot extremes on vegetation production, however, remains uncertain across biomes in natural climatic conditions. In this study, we in...
متن کاملMicrobial diversity drives multifunctionality in terrestrial ecosystems
Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations acros...
متن کاملCharacterizing uncertainty in modeling primary terrestrial ecosystem processes
[1] The simulation results from models participating in the Coupled Climate Carbon Cycle Model Intercomparison Project (CMIP) highlight the role of positive carbonclimate feedback in accelerating growth of atmospheric CO2. The large range among models in the strength of this feedback indicates the uncertainty in our understanding of the response of the land and the oceans to continued climate w...
متن کاملEffects of Climate Change and LUCC on Terrestrial Biomass in the Lower Heihe River Basin during 2001–2010
Ecosystem services are tightly coupled with availability of solar energy and its partition into energy fluxes, and biomass accumulation, which represents the energy flux in ecosystems, is a key aspect of ecosystem services. This study analyzed the effects of climate change and land use and land cover change (LUCC) on the biomass accumulation change in the Lower Heihe River Basin during 2001–201...
متن کاملImportance of vegetation dynamics for future terrestrial carbon cycling
Terrestrial ecosystems currently sequester about one third of anthropogenic CO2 emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO2 by land based ecosystems is highly uncertain.Most ecosystemmodels used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 369 1943 شماره
صفحات -
تاریخ انتشار 2011